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Abstract. In this paper, a transformation is applied to Bessel-Circular-Gaussian beam to generate a new laser

beam called Exton-Gaussian beams which have applications to wide areas of optics. For this, a novel integral

transform involving the product of the Whittaker function and two Bessel functions of the first kind; the first

with a linear argument and the second, which is a modified Bessel function, with a quadratic argument is derived

whose solution is expressed in terms of the Exton’s function X8 and the Lauricella’s function F
(3)
A . Some special

cases of the main integral are illustrated by being specific on parameters. The analytical expression of the beam

is utilized to study the propagation behavior. It is shown that the beam is composed of lobes and a dark center,

potentially capable of trapping atoms in it. Such a behavior is important in physics and will be very useful for

trapping atoms in its dark center and could be exploited as optical tweezers.
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1 Introduction

Some mathematical research have been investigated during the last decades by evaluating some
integrals involving special functions such as Bessel an Whittaker functions (Agarwal, 2013;
Belafhal & Hennani, 2011; Becker, 2009; Choi & Agarwal, 2014; Khan et al., 2016). In the laser
fields, these investigations are important to generate new beams waves, (Bandres & Vega, 2008;
Mago et al., 2009; Salamin, 2018, 2019; Teng et al., 2018; Usman et al., 2018; Belafhal et al.,
2020) and to study their propagation through mediums as free space, ABCD optical system,
photonic crystals, chiral medium, turbulent and oceanic atmospheres, maritime turbulence and
biological tissue (Andrews & Phillips, 2005; Belafhal & Dalil-Essakali, 2000; Dolev et al., 2009;
Khannous et al., 2014; Khanous et al., 2018; Saad & Belafhal, 2017).

In the present work, we give a closed-form of the integral transform involving the product
of the Whittaker function and two Bessel functions of the first kind; the first with a linear
argument and the second, which is a modified Bessel function, with a quadratic argument. To
the best of our knowledge, the evaluated closed-form of this integral transform is unprecedented
and essential in the field of laser physics.
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In the following, we give the definitions necessary for understanding the present investigation.
For that, we start by the expansion of the Bessel function of the order ν given by (Watson, 1944)

Jν(z) =

∞∑
m=0

(−1)m(z/2)ν+2m

m!Γ(ν +m+ 1)
, (1)

and the modified Bessel function given in terms of Jν as

Iν(z) = i−νJν(iz). (2)

The Appell and Lauricella’s hypergeometric are defined, respectively, by (Srivastava & Manocha,
1984; Srivastava & Karlsson, 1985)

F2 [a, b1, b2; c1, c2;x, y] =
∞∑

m,n=0

(a)m+n(b1)m(b2)n
(c1)m(c2)n

xm

m!

yn

n!
, (3)

with |x|+ |y| < 1, and

F
(3)
A [a, b1, b2, b3; c1, c2, c3;x, y, z] =

∞∑
m,n,p=0

(a)m+n+p(b1)m(b2)n(b3)p
(c1)m(c2)n(c3)p

xm

m!

yn

n!

zp

p!
, (4)

with |x|+ |y|+ |z| < 1.

Also,we recall the definition of the Humbert function defined as (Gradshteyn & Ryzhik, 1994;
Srivastava & Karlsson, 1985)

Ψ1 [a, b; c1, c2;x, y] =

∞∑
m,n=0

(a)m+n(b)m
(c1)m(c2)n

xm

m!

yn

n!
, (5)

with |x| < 1 and |y| < ∞.

The expression of the Exton’s hypergeometric function as (Exton, 1982; Srivastava &Manocha,
1984)

X8 [a, b1, b2; c1, c2, c3;x, y, z] =
∞∑

m,n,p=0

(a)2m+n+p(b1)n(b2)p
(c1)m(c2)n(c3)p

xm

m!

yn

n!

zn

p!
, (6)

with 2
√

|x|+ |y|+|z| < 1.

In the above functions, (λ)ν is the shifted factorial (Srivastava & Karlsson, 1985) defined by

(λ)ν =
Γ(λ+ ν)

Γ(λ)
=

{
1, (ν = 0, λ ∈ C \ {0})
λ(λ+ 1) · · · (λ+ n− 1), (ν = n ∈ N, λ ∈ C) , (7)

with a condition on each denominator of these equations that

cj ∈ C \ Z−
0 (for j=1,2,3).

2 Main Result

We present in this section our main result derived with the help of the previous expressions
and the relationship between the Exton’s and Lauricella’s functions elaborated recently by
Choi & Rathie (2013).
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Theorem 1. The following integral transform holds true:

I =

∫ ∞

0
x2re−αx2

Iχ(λx
2)Jµ(βx)Mk,ν(2γx

2)dx

=A X8

[
r + ε, ν − k + 1

2 ,−;χ+ 1, µ+ 1, 2ν + 1;x, y, z
]
,

=A

(
α+ γ

α+ γ + λ

)r+ε

F
(3)
A

[
r + ε, χ+ 1

2 , ν − k + 1
2 ,−;

2χ+ 1, µ+ 1, 2ν + 1;u, v, w] ,

(8)

where

A =
√

γ
2

(
β
2

)µ

µ!

(
λ
2

)χ
χ!

(2γ)νΓ(r+ε)

(α+γ)r+ε , (9)

ε = χ+
µ

2
+ ν + 1, (10)

x =
λ2

4(α+ γ)2
, y =

2γ

α+ γ
and z =

−β2

4(α+ γ)
, (11)

u =
2λ

α+ γ + λ
, v =

2γ

α+ γ + λ
and w =

−β2

4(α+ γ + λ)
, (12)

with
|x|+ |y|+ |z| < 1, and 2

√
|u|+ |v|+ |w| < 1.

Proof. By using the expansion of the modified Bessel function given by (2), I becomes

I =
∞∑

m=0

(λ/2)χ+2m

m!Γ(χ+m+ 1)
Am, (13)

where

Am =

∫ ∞

0
x2se−αx2

Jµ(βx)Mk,ν

(
2γx2

)
dx, (14)

with
s = 2m+ r + χ. (15)

With the help of Theorem 1 of Khan et al. (2016), (14) can be written as

Am =
βµγν+

1
2

µ!2µ−ν+ 1
2

Γ(2m+ r + ε)

(α+ γ)2m+r+ε

×Ψ1

[
2m+ r + ε, ν − k +

1

2
;µ+ 1, 2ν + 1;

2γ

α+ γ
,

−β2

4(α+ γ)

]
.

(16)

Consequently, if one uses the identity Srivastava & Karlsson (1985)

Γ(r + ε)(r + ε)2m+n+p = (2m+ r + ε)n+p Γ(2m+ r + ε), (17)

(13) can be rearranged as

I = A
∞∑

m,p,n=0

(r + ε)2m+n+p(ν − k + 1
2)m

(χ+ 1)m(µ+ 1)n(2ν + 1)p

xm

m!

yp

p!

zn

n!
, (18)

where, x, y and z are given by (11).
Thus, by using the Exton’s function X8 given by (6), (8) is proved.
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We express the integral I in terms of Lauricella’s triple hypergeometric function given by
(8). For that, by using the following relation Choi & Rathie (2013)

X8

[
a, b1, b2; c1 +

1

2
, c2, c3;x

2, y, z

]
=

1

(1 + 2x)a
F

(3)
A

[
a, c1, b1, b2; 2c1, c2, c3;

4x

1 + 2x
,

y

1 + 2x
,

z

1 + 2x

]
,

(19)

and by taking

a = r + ε,

b1 = ν − k +
1

2
,

b2 = 0,

c1 = χ+
1

2
,

c2 = µ+ 1,

and

c3 = 2ν + 1,

one finds (8) and this completes the proof.

3 Special Cases

In this section, we investigate some special cases of the main result (8) corresponding to some
values of parameters of Bessel and Whittaker functions.

Corollary 1. The following integral transform holds true:

∫ ∞

0
x2(r−k)e−(α−γ)x2

Iχ(λx
2)Jµ(βx)dx = A(2γ)k

×X8

[
r + ε,−2k,−;χ+ 1, µ+ 1, 2k;

λ2

4(α+ γ)2
,

2γ

α+ γ
,

−β2

4(α+ γ)

]
,

=A(2γ)k
(

α+ γ

α+ γ + λ

)r+ε

F
(3)
A

[
r + ε, χ+

1

2
,−2k,−; 2χ+ 1, µ+ 1, 2k;

2λ

α+ γ + λ
,

2γ

α+ γ + λ
,

−β2

4(α+ γ + λ)

]
,

(20)

where

ε = χ+
µ+ 1

2
− k.

Proof. By taking ν = −(k + 1
2), the Whittaker function is given by (Srivastava & Manocha,

1984)

Mk,−k− 1
2
(z) = e

z
2 z−k, (21)

and from (8) one finds (20). This complets the proof of the corollary.
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Corollary 2. The following integral transform holds true:∫ ∞

0
x2r+1e−αx2

Iχ(λx
2)Jµ(βx)Iν(γx

2)dx =
B

(α+ γ)r+ε

×X8

[
r + ε, ν +

1

2
,−;χ+ 1, µ+ 1, 2ν + 1;

λ2

4(α+ γ)2
,

2γ

α+ γ
,

−β2

4(α+ γ)

]
,

=
B

(α+ γ + λ)r+εF
(3)
A

[
r + ε, χ+

1

2
, ν +

1

2
,−; 2χ+ 1, µ+ 1, 2ν + 1;

2λ

α+ γ + λ
,

2γ

α+ γ + λ
,

−β2

4(α+ γ + λ)

]
,

(22)

where

B =
(λ2 )

χ

χ!

(β2 )
µ

µ!

(γ2 )
ν

ν!

Γ(r + ε)

2
,

and
ε = χ+

µ

2
+ ν + 1.

Proof. If we take k = 0, the Whittaker function becomes (Srivastava & Manocha, 1984)

M0,ν(2z) = 22ν+
1
2 ν!

√
zIν(z), (23)

and it’s easy to find (22) from (8).

Corollary 3. The following integral transform holds true:∫ ∞

0
x2re−αx2

Iχ(λx
2)Jµ(βx)sinh(γx

2)dx

=CX8

[
r + ε, 1,−;χ+ 1, µ+ 1, 2;

λ2

4(α+ γ)2
,

2γ

α+ γ
,

−β2

4(α+ γ)

]
,

=C

(
α+ γ

α+ γ + λ

)r+ε

F
(3)
A

[
r + ε, χ+

1

2
, 1,−; 2χ+ 1, µ+ 1, 2;

2λ

α+ γ + λ
,

2γ

α+ γ + λ
,

−β2

4(α+ γ + λ)

]
,

(24)

where

C =
γ

2

(λ2 )
χ

χ!

(β2 )
µ

µ!

Γ(r + ε)

(α+ γ)r+ε ,

and

ε = χ+
µ

2
+

3

2
.

Proof. It’s easy, by taking k = 0 and ν = 1
2 , to use (8) with (Srivastava & Manocha, 1984)

M0, 1
2
(z) = 2 sinh

(z
2

)
, (25)

to prove (24).

Corollary 4. The following integral transform holds true:∫ ∞

0
x2r+p+1e−(α+γ)x2

Iχ(λx
2)Jµ(βx)L

p
s(2γx

2)dx

= DX8

[
r + ε,−s,−;χ+ 1, µ+ 1, p+ 1;

λ2

4(α+ γ)2
,

2γ

α+ γ
,

−β2

4(α+ γ)

]
,

= D

(
α+ γ

α+ γ + λ

)r+ε

F
(3)
A

[
r + ε, χ+

1

2
,−s,−; 2χ+ 1, µ+ 1, p+ 1;

2λ

α+ γ + λ
,

2γ

α+ γ + λ
,

−β2

4(α+ γ + λ)

]
,

(26)
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where

D =
(p+ 1)s

2s!

(λ2 )
χ

χ!

(β2 )
µ

µ!

Γ(r + ε)

(α+ γ)r+ε ,

and

ε = χ+
µ+ p

2
+ 1.

Proof. If we take k = p+1
2 + s and ν = p

2 , the Whittaker function is expressed as (Srivastava &
Manocha, 1984)

M p+1
2

+s,p
2
(z) =

s!

(p+ 1)s
e

−z
2 z

p+1
2 L(p)

s (z), (27)

where L
(p)
s is the generalized Laguerre polynomial. So, with the help of (8) the corollary is

proved.

Corollary 5. The following integral transform holds true:∫ ∞

0
x2r+

1
2 e−(α+γ)x2

Iχ(λx
2)Jµ(βx)H2p(

√
2γx)dx

=
E

(α+ γ)
r+ε X8

[
r + ε,−p,−;χ+ 1, µ+ 1,

1

2
;

λ2

4(α+ γ)2
,

2γ

α+ γ
,

−β2

4(α+ γ)

]
,

=
E

(α+ γ + λ)
r+ε F

(3)
A

[
r + ε, χ+

1

2
,−p,−;χ+ 1, µ+ 1,

1

2
;

2λ

α+ γ + λ
,

2γ

α+ γ + λ
,

−β2

4(α+ γ + λ)

]
,

(28)

where

E =
(2p)!

2p!(−1)p
(λ2 )

χ

χ!

(β2 )
µ

µ!
Γ(r + ε),

and

ε = χ+
µ

2
+

3

4
.

Proof. In this case, we have an expression of the Whittaker function in terms of the Hermite poly-
nomial. The above corollary can easily be established by setting k = p+ 1

4 and ν = −1
4 with the

odd integer order and using the relation betweeen M and H2p given by (Srivastava & Manocha,
1984)

Mp+ 1
4
,− 1

4

(
z2
)
= (−1)p

p!

(2p)!
e

−z2

2
√
zH2p(z), (29)

we deduce (28) from (8).

Corollary 6. The following integral transform holds true:∫ ∞

0
x2r+

1
2 e−(α+γ)x2

Iχ(λx
2)Jµ(βx)H2p+1(

√
2γx)dx

=
F

(α+ γ)
r+ε X8

[
, r + ε,−p,−;χ+ 1, µ+ 1,

3

2
;

λ2

4(α+ γ)2
,

2γ

α+ γ
,

−β2

4(α+ γ)

]
,

=
F

(α+ γ + λ)
r+ε F

(3)
A

[
r + ε, χ+

1

2
,−p,−; 2χ+ 1, µ+ 1,

3

2
;

2λ

α+ γ + λ
,

2γ

α+ γ + λ
,

−β2

4(α+ γ + λ)

]
,

(30)
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where

F =

√
γ

2

(λ2 )
χ

χ!

(β2 )
µ

µ!

(2p+ 1)!

(−1)pp!
Γ(r + ε),

and

ε = χ+
µ

2
+

5

4
.

Proof. By setting k = p+ 3
4 and ν = 1

4 , this corollary is established by using Theorem 1 and the
relation between the Whittaker function and the Hermite polynomial H2p+1 of an even order
given by (Srivastava & Manocha, 1984)

Mp+ 3
4
, 1
4

(
z2
)
= (−1)p

p!

(2p+ 1)!

e
−z2

2
√
z

2
H2p+1(z). (31)

Corollary 7. The following integral transform holds true:∫ ∞

0
x2r−2µ+1e−(α−ε)x2

Iχ(λx
2)Jµ(βx)γ(2µ, 2ξx

2)dx

=
G

(α+ γ)
r+ε X8

[
r + ε, 1,−;χ+ 1, µ+ 1, 2µ+ 1;

λ2

4(α+ γ)2
,

2γ

α+ γ
,

−β2

4(α+ γ)

]
,

=
G

(α+ γ + λ)
r+ε F

(3)
A

[
r + ε, χ+

1

2
, 1,−; 2χ+ 1, µ+ 1, 2µ+ 1;

2λ

α+ γ + λ
,

2γ

α+ γ + λ
,

−β2

4(α+ γ + λ)

]
,

(32)

where

G =
(2βξ2)

µ

4µµ!

(λ2 )
χ

χ!
Γ(r + ε),

and

ε = χ+
3µ

2
+ 1.

Proof. This corollary is proved by taking k = µ− 1
2 and ν = µ. In this case we have (Srivastava

& Manocha, 1984)

Mµ− 1
2
,µ (z) = 2 µ e

z
2 z

1
2
−µγ(2 µ, z), (33)

and with the help of Theorem 1, one finds (32).

Corollary 8. The following integral transform holds true:∫ ∞

0
x2r+

1
2 e−(α−γ)x2

Iχ(λx
2)Jµ(βx)erf(

√
2γx)dx

=
H

(α+ γ)
r+ε X8

[
r + ε, 1,−;χ+ 1, µ+ 1,

3

2
;

λ2

4(α+ γ)2
,

2γ

α+ γ
,

−β2

4(α+ γ)

]
,

=
H

(α+ γ + λ)
r+ε F

(3)
A

[
r + ε, χ+

1

2
, 1,−; 2χ+ 1, µ+ 1,

3

2
;

2λ

α+ γ + λ
,

2γ

α+ γ + λ
,

−β2

4(α+ γ + λ)

]
,

(34)

where

H =

√
2γ

π

(λ2 )
χ

χ!

(β2 )
µ

µ!
Γ(r + ε),

and

ε = χ+
µ

2
+

5

4
.
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Proof. By taking k = −1
4 and ν = 1

4 , the Whittaker function is reduced in terms of the erf
function as (Srivastava & Manocha, 1984)

M−1
4
, 1
4

(
z2
)
=

1

2
e

z2

2
√
πz erf(z), (35)

from which it is easy to deduce Corrollary 8.

Corollary 9. The following integral transforms hold true:∫ ∞

0
x2r+

1
2 e−αx2

Iχ(λx
2)Jµ(βx) [U(p,−2

√
γx)− U(p, 2

√
γx)] dx

=
J

(α+ γ)
r+ε X8

[
r + ε,

p

2
+

3

4
,−;χ+ 1, µ+ 1,

3

2
;

λ2

4(α+ γ)2
,

2γ

α+ γ
,

−β2

4(α+ γ)

]
,

=
J

(α+ γ + λ)
r+ε F

(3)
A

[
r + ε, χ+

1

2
,
p

2
+

3

4
,−; 2χ+ 1, µ+ 1,

3

2
;

2λ

α+ γ + λ
,

2γ

α+ γ + λ
,

−β2

4(α+ γ + λ)

]
,

(36)

where

J =
4
√
πγ

2
P+3
4 Γ(P2 + 1

4)

(λ2 )
χ

χ!

(β2 )
µ

µ!
Γ(r + ε),

and

ε = χ+
µ

2
+

5

4
.

Proof. This corollary is established by setting k = −p
2 and ν = 1

4 and Theorem 1. In this case,
the relation between the Whittaker function and the Parabolic Cylinder function U is given as
follows (Srivastava & Manocha, 1984)

M−p
2
, 1
4

(
z2

2

)
=

2
p
2

4
Γ

(
p

2
+

1

4

)√
z

π
{U(p,−z)− U(p, z)} . (37)

4 Application: Generation of Exton-Gaussian Beams

In this section, we transform a Bessel-circular-Gaussian beam (BCiGBs) by a spiral phase plate
(SPP) (see Fig.1). This system will generate a new donut beam as an azimuth dependent phase
retardation is imposed by the SPP. This phase is given by eiχϕ

′
where χ is the topological charge

of the SPP (Belafhal & Saad, 2017).

Figure 1: Illustration of the propagation of BCiGBS by a SPP through an ABCD optical system
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After the SPP, the input field can be written as

Eµ,m(ρ′, z′, ϕ′) = Fei(m+χ)ϕ′ eikz
′

ρ′ Mµ
2 ,

m
2

(
iω0

2

2χ′2 ρ
′2
)
Iν(ερ

′2)e

ikω0
2

4

(
1

q′(z)+
1

∼
q ′(z)

)
ρ′2

, (38)

where

F = Ef

(
1 + (z′/

∼
q0)

1 + (z′/q0)

)µ
2
(
2χ′2

iω0
2

) 1
2 1

[1 + (z′/q0)]
,

q′ = z′ + q0,
∼
q
′
= z′ +

∼
q0,

and

1

χ′2 = k

(
1
∼
q ′

− 1

q′

)
,

with (ρ′, z′, ϕ′) are the cylindrical coordinates and (q0,
∼
q 0) are parameters of the fundamental

Gaussian envelope.

By applying the Collins-Huygens integral (Collins, 1970) on this beam propagating through
an ABCD optical system (see Fig.1), one finds the following output field expressed, for χ equal
to an integer l, as

Eµ,m(ρ, z, ϕ) =
−iF

λB
e
ik

(
z+

Dρ2

2B

)
eikz

′
I lµ,m(ρ), (39)

where

I lµ,m(ρ) =

∫ ∞

0

∫ 2π

0
e−αρ′2e

−ikρρ′
B

cos(ϕ−ϕ′)Mµ
2 ,

m
2

(
iω0

2

2χ′2 ρ
′2
)

×Iν(ερ
′2)ei(m+l)ϕ′

dρ′dϕ′,

(40)

with

α = −ik

[
ω0

2

4

(
1

q′(z) +
1

∼
q ′(z)

)
+

A

2B

]
. (41)

With the help of the following identity (Abramowitz & Stegun, 1970)∫ 2π

0
einϕ

′
e

−ikρρ′
B

cos(ϕ−ϕ′)dϕ′ = 2πineinϕJn

(
kρρ′

B

)
, (42)

(40) can be written as

I lµ,m(ρ) = 2πi(m+l)ei(m+l)ϕI, (43)

where

I =

∫ ∞

0
e−αρ′2Iν(ερ

′2)Mµ
2 ,

m
2

(
iω0

2

2χ′2 ρ
′2
)
Jm+l

(
kρρ′

B

)
dρ′. (44)

By using Theorem 1, (39) can be expressed as

Eµ,m(ρ, z, ϕ) =
−2π

λB
e
ik

(
z+z′+

Dρ2

2B

)
i(m+l+1)ei(m+l)ϕ.F.G

×X8

[
ν +m+

l

2
+ 1,

m− µ+ 1

2
,−; ν + 1,m+ l + 1,m+ 1;x, y, z

]
,

(45)
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where

G =

√
iω2

0

8χ′2

(
kρ
2B

)m+l

(m+l)!

( ε2)
ν

ν!

(
iω2

0

2χ′2

)m
2
Γ
(
ν+m+

l
2+1

)
(
α+

iω2
0

4χ′2

)ν+m+
l
2+1

,

x =
ε2

4
(
α+

iω2
0

4χ′2

)2 , y =

iω2
0

2χ′2

α+
iω2

0

4χ′2

and z = − (kρ)2

4B2
(
α+

iω2
0

4χ′2

) ,
and

u =
2ε

α+
iω2

0

4χ′2 + ε
, v =

iω2
0

2χ′2

α+
iω2

0

4χ′2 + ε
, and w = − (kρ)2

4B2
(
α+

iω2
0

4χ′2 + ε
) .

Finally, our main result permits us to generate new laser waves called the Exton-Gaussian beams
defined by (45).

Now, we present some numerical simulations to study the dependence of the propagation
of this new beam on the propagation distance z, the radial coordinate ρ and the beam orders.
The present calculations are based on the complex amplitude expression given by (45). From
this last quantity, we deduce the intensity distribution of our donut beam which is evaluated by
I(ρ, z, ϕ) = |E(ρ, z, ϕ)|2 at any distance and for any beam orders behind the SPP.

Figure 2: Normalized intensity distribution of the Exton-Gaussian beam with l = 1 and for two
values of m

Figure 3: Normalized intensity distribution of the Exton-Gaussian beam with l = 2 and for two
values of m

So, for our illustration, we consider the propagation of the beam in a free space defined by
a transfer matrix ABCD where the elements are: A = 1, B = z, C = 0, and D = 1. The beam
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parameters are chosen as: the beam waist ω0 = 0.6mm and the wavelength λ = 1060nm. We
illustrate in Figs. 2 and 3, the normalized intensity distribution of the Exton-Gaussian beam at
the propagation distance z = 4m with a topological charge l = 1 and 2, respectively.

For different values of beam orders (see legends of these figures) and as predicted by (45),
the beam intensity is composed by some lobes, and the beam seems with a dark centre (the
intensity is null in this region). This property is very important in physics and will be very
useful for trapping atoms in its dark centre and could be exploited as optical tweezers.

5 Conclusion

In this paper, we have investigated an integral transforms involving the product of Bessel and
modified Bessel functions and Whittaker function. The result is derived in terms of the Exton’s
function X8 and the Lauricella’s hypergeometric function F

(3)
A . Some special cases are examined

for special values of the parameters of the Whittaker function. At the end of this investigation
and as application, we have investigated in section 4, the possibility of generating new donut
waves called Exton-Gaussian beams.
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